PARTIAL DIFFERENTIAL EQUATIONS

XAVIER ROS OTON

- 5. Nonlinear parabolic PDE and the Navier-Stokes equations
- (1) Let u(x,t) be the solution of the heat equation in \mathbb{R}^n

$$\begin{cases} \partial_t u - \Delta u &= 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) &= u_0(x) & \text{for } t = 0. \end{cases}$$

given by

$$u(x,t) = 1/(4\pi t)^{n/2} \int_{\mathbb{R}^n} u_0(y) e^{-\frac{|x-y|^2}{4t}} dy$$

Prove that, for any $k \in \mathbb{N}$, if $u_0 \in C^k(\mathbb{R}^n)$ and all its derivatives (up to order k) are bounded then

$$||u(t)||_{C^{k+1}(\mathbb{R}^n)} \le \frac{C}{t^{1/2}} ||u_\circ||_{C^k(\mathbb{R}^n)}$$

for some constant C depending only on n and k.

(3 points)

(2) Let $u, v \in C^{\infty}(\overline{\Omega} \times [0, T])$ be two solutions of the nonlinear Schrödinger equation

$$\begin{cases} i\partial_t u - \Delta u &= f(u) & \text{in } \Omega \times (0, T] \\ u &= 0 & \text{on } \partial\Omega \times [0, T] \end{cases}$$

with $f \in C^{\infty}$. Prove that

$$||u(t) - v(t)||_{L^2(\Omega)} \le e^{Ct} ||u(0) - v(0)||_{L^2(\Omega)}$$

for some constant C.

(3 points)

(3) (i) Let $u \in C^{\infty}(\overline{\Omega} \times (0,T))$ be a solution of

$$\begin{cases} \partial_t u - \Delta u &= f(u) & \text{in } \Omega \times (0, T) \\ u &= 0 & \text{on } \partial\Omega \times (0, T) \end{cases}$$

Prove that

$$\frac{d}{dt} \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - F(u) \right) = - \int_{\mathbb{R}^n} |\partial_t u|^2$$

where F' = f. This means that the "energy" of u is decreasing with time.

(ii) A stationary solution U(x) of

$$\begin{cases}
-\Delta U &= f(U) & \text{in } \Omega \\
U &= 0 & \text{on } \partial\Omega
\end{cases}$$

is called asymptotically stable if there is an $\varepsilon > 0$ such that for any $u_{\circ} \in C(\overline{\Omega})$ satisfying $u_{\circ} = 0$ on $\partial \Omega$ and

$$||u_{\circ} - U||_{L^{\infty}(\Omega)} < \varepsilon$$

we have that the solution u(x,t) of

(0.1)
$$\begin{cases} \partial_t u - \Delta u &= f(u) & \text{in } \Omega \times (0, T) \\ u &= 0 & \text{on } \partial\Omega \times (0, T) \\ u(x, 0) &= u_0(x) & \text{for } t = 0 \end{cases}$$

exists for all time (that is, $T = \infty$) and

$$\lim_{t \to \infty} u(x,t) = U(x) \qquad \text{uniformly for } x \in \Omega.$$

Prove that if $U \in C^2(\overline{\Omega})$ is an asymptotically stable solution then

$$\mathcal{E}(U) \leq \mathcal{E}(U+\eta)$$
 for all $\eta \in C_c^{\infty}(\Omega)$ with $\|\eta\|_{L^{\infty}(\Omega)} < \varepsilon$,

where $\mathcal{E}(w) = \int_{\Omega} \left(\frac{1}{2} |\nabla w|^2 - F(w) \right)$.

(4 points)

(4) Let $u \in C(\overline{\Omega} \times [0,T])$ be a solution of

$$\begin{cases} \partial_t u - \Delta u &= -u^2 & \text{in } \Omega \times (0, T] \\ u &= 0 & \text{on } \partial\Omega \times (0, T]. \end{cases}$$

Prove that $u(x,T) \leq 1/T$, regardless of the initial data at t=0.

Hint: Use the comparison principle.

(3 points)

(5) The KPP equation

$$\begin{cases} \partial_t u - \Delta u &= u(1-u) & \text{in } \mathbb{R}^n \times (0,T) \\ u(x,0) &= u_0(x) & \text{for } t=0 \end{cases}$$

is one of the most classical reaction-diffusion PDEs, and models population dynamics.

- (i) Prove that if $0 < u_0(x) < 1$ for all $x \in \Omega$ then 0 < u(x,t) < 1 for all t > 0, $x \in \Omega$.
- (ii) Prove that for any $e \in \mathbb{S}^{n-1}$ there is a travelling-wave solution of the type

$$u(x,t) = v(x \cdot e - ct),$$
 $v(z) = \frac{1}{(1 + e^{\beta z})^2}$

for some $\beta > 0$ and some c > 0.

(3 points)

(6) Using that any solution U(x,t) to the heat equation

$$\left\{ \begin{array}{cccc} \partial_t U - \Delta U & = & 0 & & \text{in} & \Omega \times (0, \infty) \\ U & = & 0 & & \text{on} & \partial \Omega \times (0, \infty) \end{array} \right.$$

satisfies, for $1 \le p \le q \le \infty$,

$$||U(t)||_{L^{q}(\Omega)} \le Ct^{-\frac{n}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}||U(0)||_{L^{p}(\Omega)},$$

prove that:

(i) Given a C^{∞} and globally Lipschitz function f, and any initial data $u_{\circ} \in L^{1}(\Omega)$, there exists a solution to the nonlinear heat equation

$$\begin{cases} \partial_t u - \Delta u &= f(u) & \text{in } \Omega \times (0, T) \\ u &= 0 & \text{on } \partial\Omega \times (0, T) \\ u(x, 0) &= u_0(x) & \text{for } t = 0. \end{cases}$$

for a short time T > 0.

(ii) Such solution u(t) is bounded (and therefore C^{∞}) for positive times t > 0.

(4 points)

- (7) Let $\vec{w} \in C^{\infty}(\overline{\Omega})$ be given.
 - (i) Prove that there exist functions $\vec{w_o}: \Omega \to \mathbb{R}^n$ and $q: \Omega \to \mathbb{R}$, such that

$$\vec{w} = \vec{w_o} + \nabla q$$

$$\operatorname{div} \vec{w_{\circ}} = 0 \text{ in } \Omega$$

and with q = 0 on $\partial \Omega$.

(ii) Prove that such representation for \vec{w} is unique. Thus, we may denote

$$\vec{w_{\circ}} = \Pi \vec{w},$$

the Leray projection of \vec{w} .

(iii) Using the results from Chapter 2, deduce that

$$\|\Pi \vec{w}\|_{H^k(\Omega)} \le C \|\vec{w}\|_{H^k(\Omega)}$$

for all $k \geq 1$.

(4 points)

(8) Let $\vec{u} \in C^{\infty}(\Omega \times (0,T))$ be a solution of the Navier-Stokes equations

(0.2)
$$\begin{cases} \partial_t \vec{u} + (\vec{u} \cdot \nabla)\vec{u} &= \Delta \vec{u} - \nabla p & \text{in } \Omega \times (0, T) \\ \operatorname{div} \vec{u} &= 0 & \text{in } \Omega \times (0, T) \\ \vec{u} &= 0 & \text{on } \partial \Omega \times (0, T) \end{cases}$$

Prove that

$$\frac{d}{dt} \int_{\Omega} |\vec{u}|^2 dx \le 0$$

(3 points)

(9) Let $\vec{u} \in C^{\infty}(\overline{\Omega})$ and $\Omega \subset \mathbb{R}^2$ (that is, n=2).

Prove that if div $\vec{u} = 0$ in Ω , then there exists a unique function ψ such that

$$\vec{u} = \operatorname{curl} \psi := (-\partial_{x_2} \psi, \, \partial_{x_1} \psi)$$

and $\psi = 0$ on $\partial \Omega$.

Moreover, prove that ψ

$$-\Delta \psi = \omega$$
 in Ω .

where $\omega := \partial_{x_1} u_2 - \partial_{x_2} u_1$.

(2 points)

- (10) Let $\Omega \subset \mathbb{R}^2$ (in 2D), and $\vec{u} \in C^{\infty}(\overline{\Omega} \times [0,T))$ be any solution of the Navier-Stokes equation (0.2).
 - (i) Prove that, if we denote $\vec{u} = (u_1, u_2)$, then the vorticity

$$\omega(x,t) := \operatorname{curl} \vec{u} = \partial_{x_1} u_2 - \partial_{x_2} u_1,$$

solves the PDE

$$\partial_t \omega + \vec{u} \cdot \nabla \omega = \Delta \omega$$
 in $\Omega \times (0, T)$.

Prove also that

$$\Delta \vec{u} = (-\partial_{x_2}\omega, \partial_{x_1}\omega)$$
 in Ω ,

so that, since $\vec{u} = 0$ on $\partial\Omega$, then \vec{u} is uniquely determined by ω .

(ii) Assuming that $\int_{\partial\Omega} \omega \frac{\partial \omega}{\partial \nu} \leq 0$ for all t > 0, prove that

$$\|\omega(t)\|_{L^2(\Omega)} \le \|\omega_\circ\|_{L^2(\Omega)}$$
 for all $t \in (0, T)$,

where ω_{\circ} is the vorticity at time t=0.

(iii) Using the previous Exercise, and the results from Chapter 2, prove that

$$\|\vec{u}(t)\|_{H^1(\Omega)} \le C \|\omega_\circ\|_{L^2(\Omega)}.$$

This means that, in 2D, the H^1 norm of the solution cannot blow-up in finite time.

(4 points)

(11) Let us consider the Navier-Stokes equation (0.2) in dimension $n \leq 3$. Using the bound for the heat equation

$$||P_t[v]||_{H^2(\Omega)} \le \begin{cases} |Mt^{-1/2}||v||_{H^1(\Omega)} & \text{for} \quad t \in (0,1) \\ |Me^{-\lambda_1 t}||v||_{H^1(\Omega)} & \text{for} \quad t \ge 1, \end{cases}$$

prove that there exists $\delta > 0$ such that if the initial data satisfies

$$\|\vec{u}_{\circ}\|_{H^2(\Omega)} < \delta$$

then the solution \vec{u} of (0.2) exists for all time t > 0 (that is, $T = \infty$).

<u>Note</u>: Use without proof, as in the proof of short-time existence for (0.2), the inequality $\|(\vec{w}\cdot\nabla)\vec{w}\|_{H^1(\Omega)} \leq C\|\vec{w}\|_{H^2(\Omega)}^2$, valid for all functions $\vec{w}\in H^2(\Omega)$ with $\vec{w}=0$ on $\partial\Omega$.

(3 points)